A modification of the generalized shift-splitting method for singular saddle point problems
نویسندگان
چکیده
منابع مشابه
A modification of the generalized shift-splitting method for singular saddle point problems
A modification of the generalized shift-splitting (GSS) method is presented for solving singular saddle point problems. In this kind of modification, the diagonal shift matrix is replaced by a block diagonal matrix which is symmetric positive definite. Semiconvergence of the proposed method is investigated. The induced preconditioner is applied to the saddle point problem and the preconditioned...
متن کاملOn the generalized shift-splitting preconditioner for saddle point problems
In this paper, the generalized shift-splitting preconditioner is implemented for saddle point problems with symmetric positive definite (1,1)-block and symmetric positive semidefinite (2,2)-block. The proposed preconditioner is extracted form a stationary iterative method which is unconditionally convergent. Moreover, a relaxed version of the proposed preconditioner is presented and some proper...
متن کاملA Parameterized Splitting Preconditioner for Generalized Saddle Point Problems
By using Sherman-Morrison-Woodbury formula, we introduce a preconditioner based on parameterized splitting idea for generalized saddle point problems which may be singular and nonsymmetric. By analyzing the eigenvalues of the preconditioned matrix, we find that when α is big enough, it has an eigenvalue at 1 with multiplicity at least n, and the remaining eigenvalues are all located in a unit c...
متن کاملSemi-convergence of the Generalized Local Hss Method for Singular Saddle Point Problems
Recently, Zhu [Appl. Math. Comput., 218 (2012), 8816–8824] considered the generalized local HSS (GLHSS) method for solving nonsingular saddle point problems and studied its convergence. In this paper, we prove the semi-convergence of the GLHSS method when it is applied to solve the singular saddle point problems.
متن کاملA note on GPIU method for generalized saddle point problems
In this note, the generalized parameterized inexact Uzawa method, abbreviated as the GPIU method, for solving the generalized saddle point problems with symmetric positive semi-definite (2,2) block is studied. The convergence of the method is established, which is an extension of the results obtained in a recent paper by Zhou and Zhang (2009) [22]. Crown Copyright 2013 Published by Elsevier Inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2017
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2017.07.029